
The Cornell Jaguar Project: Adding Mobility to PREDATOR
Demonstration

Philippe Bonnet, Kyle Buza, Zhiyuan Chen, Victor Cheng, Randolph Chung, Takako Hickey,
Ryan Kennedy, Daniel Mahashin, Tobias Mayr, Ivan Oprencak, Praveen Seshadri, Hubert Siu

http://www.cs.cornell.edu/database/jaguar
 Cornell University
Ithaca, NY 14853

ABSTRACT
The Cornell Jaguar Project is exploring a variety of
issues related to mobility and query processing. One
broad theme is to break down the traditional client
and server boundaries, leading to ubiquitous query
processing. Another theme is to extend database
and query processing techniques to small-scale and
mobile devices. The project builds on and extends
the Cornell PREDATOR database engine.

Keywords
Mobile computing, ubiquitous query processing.

1. ISSUES
The Cornell PREDATOR system is a full-fledged
object-relational DBMS that developed efficient
database extensibility mechanisms. PREDATOR
was demonstrated at SIGMOD 1997. The Jaguar
project extends PREDATOR with support for mobile
and portable execution. The demonstration includes
the following features:

a) The use of Java user-defined functions (UDFs)
that can be developed at the client and shipped
to the server where they are executed within
SQL queries.

b) The transparent execution of Java functions at
the client (instead of the server), along with
visualizations of query optimization decisions
that direct the choice of execution algorithm
[MS99].

c) The use of novel combinations of compression
techniques to effectively shrink the size of

query results that need to be shipped between
the database server and mobile clients [CS99].

d) The incorporation of small-scale devices
(sensors, actuators, smartcards, etc.) into the
database system, including the ability to
execute partial, long-running queries over a
mobile and disconnected collection of devices.

e) The use of handheld computers in a data-
intensive “telepresence” application.

2. BACKGROUND
2.1 Extensibility in an OR-DBMS
Extensibility is an important goal of object-relational
database systems (OR-DBMSs). Two important
aspects of extensibility are the ability to add new
functions, and the ability to add new types for
complex data. Support for complex data types in
OR-DBMSs is based on Abstract Data Types
(ADTs) and user-defined functions (UDFs).

2.2 Security and Ease of Extension
The extensibility of OR-DBMSs usually comes at the
cost of security and reliability. Whenever new code
is added into the server, it has the potential to
(a) crash the server,
(b) interact undesirably with other server code,
(c) corrupt the server machine,
(d) monopolize resources, degrading performance,

It has therefore usually been the assumption that
database extensions are written by ``database
developers'' who are trained and trusted persons.
While this assumption may be valid in controlled
environments, it is certainly not true when the user
community is distributed over the WWW. For
instance, consider a database of stock market data,
made available to investors across the WWW. Each
investor might wish to specify his/her own prediction
functions to run in queries against the data. In such
a scenario, secure extensibility is an important
consideration. Another concern is scalability, and
how the database system behaves as hundreds or
thousands of users try to use new extensions.

2.3 Overview of PREDATOR
The Cornell PREDATOR system is a client-server
OR-DBMS. Data types are modeled as Enhanced
ADTs (E-ADTs) [Sesh98]; the enhancements
involve the specification of optimization semantics
for methods (this was demonstrated at SIGMOD
1997). Several E-ADTs have been implemented,
including images, audio, video, documents, and
geographic types. Database clients may be
implemented in any programming language;
currently C++ and Java clients have been
implemented. Java clients can run as applets within
a browser anywhere on the WWW. Since Java is a
portable language with security features, it seems
an ideal choice for database extensibility. We have
implemented mechanisms for the database server
to be extended with Java functions. These functions
can be tested on the client, and then migrated to the
server.

3. CONTENT OF DEMONSTRATION
3.1 Server Extensibility using Java
We demonstrate the ability to extend PREDATOR
with user-defined functions written in Java. The user
develops and tests these functions on the client site,
and transparently migrates them to the server site,
where they are used within queries. This form of
extensibility is secure, portable and easy to use,
without losing too much by way of performance.

This functionality is demonstrated in the context of a
realistic application involving financial data
management.

3.2 Client-side Java UDFs
When there are a very large number of users,
scalability issues dictate that UDFs stay on the
client-site, rather than migrate to the server. UDFs
may also use some client resources that should not
be shipped to the server. However, we would still
like the UDFs to participate in queries. We have
developed distributed database algorithms to apply
these client-site UDFs, and query optimization
algorithms to incorporate these algorithms into the
PREDATOR server. There are interesting network
utilization tradeoffs between the algorithms. We
demonstrate these using a client connected to the
server across a slow connection.

3.3 Result compression for clients
Results of queries are typically shipped to clients for
display to users. The client applications extract large
amounts of data from the database by running

queries and apply complex analyses to the query
result. We have developed algorithms that
compress query results utilizing the semantic
information available in the query. These result in
compression ratios that are 75% higher than
standard compression algorithms like LZW. High
compression ratios are critical when network
bandwidths act as the bottleneck between client and
server, or when the memory resources of the client
are limited. We demonstrate these techniques by
using a handheld device to access financial data.
The compression techniques used vary from query
to query, and are determined automatically using a
"compression optimizer".

3.4 Device Databases
A new and very interesting form of mobile
computing involves small-scale devices like
sensors, actuators and smartcards. We have
developed a data and system architecture that
integrates these devices with a regular object-
relational database system like PREDATOR. Our
demonstration uses JavaRings and sensor devices.
We show queries that run partially over the central
database and partly within the devices. The
interesting issues deal with the mobility and
intermittent connectivity of the devices. We consider
devices that are often disconnected as well as
devices that provide asynchronous “event” data.

3.5 Handhelds and Scalable Telepresence
We also demonstrate the use of palmtops and
handheld computers as agents of telepresence. We
imagine a scenario in the not-too-distant future
where all our environments are compute-rich. This
means that we can interact with computers in the
office, walking down the corridor, in the elevator, in
the car, on the plane, in the taxi and in the hotel
room, without any seeming discontinuity. The key to
such seamless interaction is, of course, the ability to
transfer state along with the mobile individual. We
propose that handheld computers act as the bearers
of this state information. We demonstrate this
concept using simple applications. In the long term,
we expect this to evolve into another variant of
ubiquitous query processing, where a query
computation “moves” with the end-user across a
variety of environments.

4. REFERENCES
[CS99] Z.Chen and P.Seshadri. An Algebraic Compression
Framework for Query Results. Submitted to publication, 1999.
[MS99] T. Mayr and P.Seshadri. Client-Site Query Extensions.
In Proceedings of ACM SIGMOD ’99 International
Conference on Management of Data, Philadelphia, PA, 1999.

[Sesh98] P.Seshadri. Enhanced Abstract Data Types in Object- Relational Databases. In VLDB Journal 7(3), 1998.

